
J
H
E
P
0
3
(
2
0
0
8
)
0
5
3

Published by Institute of Physics Publishing for SISSA

Received: November 13, 2007

Revised: February 19, 2008

Accepted: March 14, 2008

Published: March 19, 2008

Boundary S matrix of an open XXZ spin chain with

nondiagonal boundary terms

Rajan Murgan

Physics Department, University of Miami,

P.O. Box 248046, Coral Gables, FL 33124 U.S.A.

E-mail: rmurgan@physics.miami.edu

Abstract: Using a recently proposed solution for an open antiferromagnetic spin-1/2

XXZ quantum spin chain with N (even) spins and two arbitrary boundary parameters at

roots of unity, we compute the boundary scattering amplitudes for one-hole states. We also

deduce the relations between the lattice boundary parameters appearing in the spin-chain

Hamiltonian and the IR (infrared) parameters that appear in the boundary sine-Gordon S

matrix.

Keywords: Lattice Integrable Models, Bethe Ansatz, Exact S-Matrix, Boundary

Quantum Field Theory.

mailto:rmurgan@physics.miami.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
3
(
2
0
0
8
)
0
5
3

Contents

1. Introduction 1

2. Bethe ansatz and string hypothesis 3

2.1 One-hole state 4

2.2 One-hole state with 2-string 5

3. Boundary S matrix 6

3.1 Eigenvalue for the one-hole state without 2-string 7

3.2 Eigenvalue for the one-hole state with 2-string 11

3.3 Relation to boundary sine-Gordon model 13

4. Discussion 14

1. Introduction

Factorizable S matrix is an important object of integrable field theories and integrable

quantum spin chains. As for the “bulk” case where the S matrix is determined in terms

of two-particle scattering amplitudes, the “boundary” case can equally well be formulated

in terms of an analogous “one-particle boundary-reflection” amplitude. These bulk and

boundary amplitudes are required to satisfy Yang-Baxter [1]–[3] and the boundary Yang-

Baxter [4, 5] equations respectively. Methods based on Bethe equations have long been

used to compute bulk two-particle S matrices [6]–[8]. In [8], Fadeev and Takhtajan studied

scattering of spinons for the periodic XXX chain for both the ferromagnetic and antifer-

romagnetic cases. The bulk two-particle S matrix for the latter case coincides with the

bulk S matrix for the sine-Gordon model [2] in the limit β2 → 8π, where β is the sine-

Gordon coupling constant. Much work has also been done on the subject for open spin

chains [9]–[16] as well as for integrable field theories with boundary [5, 9]. In [5], Ghoshal

and Zamolodchikov presented a precise formulation of the concept of boundary S matrix

for 1 + 1 dimensional quantum field theory with boundaries such as Ising field theory with

boundary magnetic field and boundary sine-Gordon model. For the latter model, the au-

thors used a bootstrap approach to compute the boundary S matrix. They determined the

scalar factor up to a CDD-type of ambiguity. Nonlinear integral equation (NLIE) [17, 18]

approach has also been used to study excitations in integrable quantum field theories such

as the sine-Gordon model [19]–[22] and open quantum spin-1/2 XXZ spin chains [12]–[15].

In fact, in [15], NLIE approach is used to compute boundary S matrix for the open spin-1/2

XXZ spin chain with nondiagonal boundary terms, where the boundary parameters obey

certain constraint. The bulk anisoptopy parameter however is taken to be arbitrary.
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In this paper, we compute the eigenvalues of the boundary S matrix for a special case of

an open spin-1/2 XXZ spin chain with nondiagonal boundary terms with two independent

boundary parameters (with no constraint) at roots of unity, using the solution obtained

recently [23, 24]. The motivation for the performed computation is the fact that the

Bethe ansatz equation for this model is unchanged under sign reversal of the boundary

parameters. Hence, the usual trick of obtaining the second eigenvalue of the boundary

S matrix of an open spin-1/2 XXZ spin chain by exploiting the change in Bethe ansatz

equation under such sign reversal of the boundary parameters [10, 11, 15, 16] would not

work here. Consequently, identifications of separate one-hole states are necessary here.

As far as the formalism goes, we follow the approach used earlier for diagonal open spin

chains [10, 11]. This is a generalization of the method developed by Korepin, Andrei and

Destri [6, 7] for computing bulk S matrix. The quantization condition discussed by Fendley

and Saleur [9] is a crucial step for the calculation. The solution utilized here was derived for

certain values of bulk anisotropy parameter, µ in the repulsive regime (µ = π
p+1 ∈ (0, π

2 ]) for

odd p values. Hence, we focus only on the critical and repulsive regime, which corresponds

in the sine-Gordon model to β2 ∈ [4π, 8π).1 One-hole excitations for this model occur in

even N sector [25] in contrast to the diagonal open spin-1/2 XXZ spin chain where such

excitations appear in the odd N sector [11].

The outline of the paper is as follows. In section 2, we briefly review the model.

Previously found Bethe ansatz solution for the model is presented here [23, 24]. We also

review the string hypothesis for two one-hole states. In section 3, we proceed with the

computation of the scattering amplitudes. Since the Bethe roots for the model consist

of “sea” roots and “extra” roots, we rely on a conjectured relation between the “extra”

roots and the hole rapidity, which is confirmed numerically for system up to about 60

sites. We find that the eigenvalue derived for the open XXZ spin chain agrees with one

of the eigenvalues of Ghoshal-Zamolodchikov’s boundary S matrix for the one boundary

sine-Gordon model, provided the lattice boundary parameters that appear in the spin chain

Hamiltonian and the IR parameters that appear in Ghoshal-Zamolodchikov’s boundary S

matrix [5] obey the same relation as in [15].2 The problem of finding the second eigenvalue

of the boundary S matrix requires the identification of an independent one-hole state. In

contrast to previous studies [10, 11, 15, 16], where such state was found by reversing the

signs of the boundary parameters,3 similar strategy does not work here. Reversing the

signs of the boundary parameters in the present case leaves the Bethe equation unchanged,

hence giving the same one-hole state. Interestingly, a separate one-hole state with 2-string

is found [25]. Using a conjectured relation between “extra” roots, hole rapidity and the

boundary parameters, which is again confirmed numerically for system up to about 60

sites, we derive the remaining eigenvalue which also agrees with Ghoshal-Zamolodchikov’s

result. Finally, we conclude the paper with a brief discussion and possible future work on

the subject in section 4.

1β2 = 8(π − µ)
2Very recently, similar relations were found for the open XXZ spin chain with diagonal-nondiagonal

boundary terms in [16].
3In fact, there is a change ξ± → −ξ± in the Bethe equation for the diagonal case [11].
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2. Bethe ansatz and string hypothesis

We begin this section by reviewing recently proposed Bethe ansatz solution [23, 24] for the

following model [5, 26]

H = H0 +
1

2
sinh η( cosech α−σx

1 + cosech α+σx
N ) , (2.1)

where the “bulk” Hamiltonian is given by

H0 =
1

2

N−1
∑

n=1

(

σx
nσx

n+1 + σy
nσy

n+1 + cosh η σz
nσz

n+1

)

. (2.2)

In the above expressions, σx, σy, σz are the usual Pauli matrices, η is the bulk anisotropy

parameter (taking values η = iπ
p+1 , with p odd), α± are the boundary parameters, and N

is the number of spins/sites. Note that this model has only two boundary parameters.

The most general integrable boundary terms contain six boundary parameters. In the

present case, four other boundary parameters have been set to zero. We restrict the values

of the remaining parameters, α± to be pure imaginary to ensure the hermiticity of the

Hamiltonian (2.1). The Bethe ansatz equations are given by

δ
(

u
(1)
j

)

h(2)
(

u
(1)
j − η

)

δ
(

u
(1)
j − η

)

h(1)
(

u
(1)
j

) = −
Q2

(

u
(1)
j − η

)

Q2

(

u
(1)
j + η

) , j = 1 , 2 , . . . ,M1 ,

h(1)
(

u
(2)
j − η

)

h(2)(u
(2)
j )

= −
Q1

(

u
(2)
j + η

)

Q1

(

u
(2)
j − η

) , j = 1 , 2 , . . . ,M2 . (2.3)

where

δ(u) = 24 (sinhu sinh(u + 2η))2N sinh 2u sinh(2u + 4η)

sinh(2u + η) sinh(2u + 3η)
sinh(u + η + α−)

sinh(u + η − α−) sinh(u + η + α+) sinh(u + η − α+) cosh4(u + η) , (2.4)

h(1)(u) =
8 sinh2N+1(u+2η) cosh2(u+η) cosh(u+2η)

sinh(2u + 3η)
, h(2)(u) = h(1)(−u−2η) (2.5)

and

Qa(u) =

Ma
∏

j=1

sinh
(

u − u
(a)
j

)

sinh
(

u + u
(a)
j + η

)

, a = 1 , 2 , (2.6)

M1 and M2 are the number of Bethe roots, u
(1)
j and u

(2)
j (zeros of Q1(u) and Q2(u) respec-

tively).

– 3 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
3

2.1 One-hole state

In order to compute the spinon boundary scattering amplitude, we consider a one-hole

state. The roots distribution for such a state was found in [24]. One-hole excitations for

the open XXZ spin chain we study here appear in the even N sector. Hence, it is sufficient

to review the results for even N case. The shifted Bethe roots ũ
(a)
j = u

(a)
j + η

2 for this state

have the following form
{

µλ
(a,1)
j : j = 1 , 2 , . . . ,M(a,1)

µλ
(a,2)
j + iπ

2 , : j = 1 , 2 , . . . ,M(a,2)

, a = 1 , 2 , (2.7)

where µ = π
p+1 and λ

(a,b)
j are real. Here, M(1,1) = M(2,1) = N

2 , and M(1,2) = p+1
2 , M(2,2) =

p−1
2 . The µλ

(a,1)
j are the zeros of Qa(u) that form real sea (“sea” roots) and µλ

(a,2)
k are real

parts of the “extra” roots (also zeros of Qa(u)) which are not part of the “seas”. Hence,

there are two “seas” of real roots. We employ notations used in [13],

en(λ) =
sinh

(

µ(λ + in
2 )
)

sinh
(

µ(λ − in
2 )
) , gn(λ) = en

(

λ ±
iπ

2µ

)

=
cosh

(

µ(λ + in
2 )
)

cosh
(

µ(λ − in
2 )
) . (2.8)

Rewriting bulk and boundary parameters [13], η = iµ, α± = iµa±
4 the Bethe ansatz

equations (2.3) for the “sea” roots then take the following form

e1

(

λ
(1,1)
j

)2N+1[

g1

(

λ
(1,1)
j

)

e1+2a−

(

λ
(1,1)
j

)

e1−2a−

(

λ
(1,1)
j

)

e1+2a+

(

λ
(1,1)
j

)

e1−2a+

(

λ
(1,1)
j

)]−1
(2.9)

=−

N/2
∏

k=1

[

e2

(

λ
(1,1)
j −λ

(2,1)
k

)

e2

(

λ
(1,1)
j +λ

(2,1)
k

)]

(p−1)/2
∏

k=1

[

g2

(

λ
(1,1)
j −λ

(2,2)
k

)

g2

(

λ
(1,1)
j +λ

(2,2)
k

)]

,

and

e1

(

λ
(2,1)
j

)2N+1
g1

(

λ
(2,1)
j

)−1
(2.10)

=−

N/2
∏

k=1

[

e2

(

λ
(2,1)
j −λ

(1,1)
k

)

e2

(

λ
(2,1)
j +λ

(1,1)
k

)]

(p+1)/2
∏

k=1

[

g2

(

λ
(2,1)
j −λ

(1,2)
k

)

g2

(

λ
(2,1)
j +λ

(1,2)
k

)]

,

respectively, where j = 1 , . . . , N
2 . These equations can be re-expressed in terms of counting

functions, h
(l)(λ) as

h
(l)(λ

(l,1)
j ) = Jj , l = 1 , 2 (2.11)

where h
(l)(λ) are given by

h
(1)(λ) =

1

2π

{

(2N+1)q1(λ)−r1(λ)−q1+2a−
(λ)−q1−2a−

(λ)−q1+2a+(λ)−q1−2a+(λ) (2.12)

−

N/2
∑

k=1

[

q2

(

λ−λ
(2,1)
k

)

+q2

(

λ+λ
(2,1)
k

)]

−

(p−1)/2
∑

k=1

[

r2

(

λ−λ
(2,2)
k

)

+r2

(

λ+λ
(2,2)
k

)]

}

,

4The string hypothesis (2.7) holds true only for suitable values of a±, namely ν−1
2

< |a±| < ν+1
2

,

a+a− > 0 , where ν = p + 1
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and

h
(2)(λ) =

1

2π

{

(2N + 1)q1(λ) − r1(λ) −

N/2
∑

k=1

[

q2

(

λ − λ
(1,1)
k

)

+ q2

(

λ + λ
(1,1)
k

)]

−

(p+1)/2
∑

k=1

[

r2

(

λ − λ
(1,2)
k

)

+ r2

(

λ + λ
(1,2)
k

)]

}

. (2.13)

In the above equations, qn(λ) and rn(λ) are odd functions defined by

qn(λ) = π + i ln en(λ) = 2 tan−1 (cot(nµ/2) tanh(µλ)) ,

rn(λ) = i ln gn(λ) . (2.14)

Further, {J1, J2, . . . , JN
2
} is a set of increasing positive integers that parametrize the state.5

For states with no holes, the integers take consecutive values. For one-hole state, there is

a break in the sequence, represented by a missing integer. This missing integer J̃ , fixes the

value of the hole rapidity, λ̃, according to

h
(1)(λ̃) = h

(2)(λ̃) = J̃ . (2.15)

If the hole is located to the right of the largest “sea” root (λ
(a,1)
N
2

), then J̃ = ⌊h(l)(∞) −

h
(l)(λ

(a,1)
N
2

)⌋. See [25] for more details. For later use, we next define the densities of “sea”

roots as

ρ(l)(λ) =
1

N

dh
(l)(λ)

dλ
(2.16)

where l = 1 , 2

The functions (2.14) have the following derivatives which prove to be essential to the

analysis in following sections,

an(λ) =
1

2π

d

dλ
qn(λ) =

µ

π

sin(nµ)

cosh(2µλ) − cos(nµ)
,

bn(λ) =
1

2π

d

dλ
rn(λ) = −

µ

π

sin(nµ)

cosh(2µλ) + cos(nµ)
. (2.17)

2.2 One-hole state with 2-string

In addition to the one-hole state considered in last section, there is another one-hole state.

This state is the only remaining one-hole state, which also has a 2-string. In this section,

we give some brief information on the state. The shifted Bethe roots ũ
(a)
j = u

(a)
j + η

2 for

this state have the following form






















µλ
(a,1)
j j = 1 , 2 , . . . ,M(a,1)

µλ
(a,2)
j + iπ

2 , j = 1 , 2 , . . . ,M(a,2)

µλ
(a)
0 + η

2

µλ
(a)
0 − η

2

, a = 1 , 2 , (2.18)

5In principle, there are two such sets of integers,
n

J
(1)
i

o

and
n

J
(2)
i

o

corresponding to the two counting

functions, h
(1)(λ) and h

(2)(λ) respectively. But, in fact these two sets of integers are identical. Hence we

choose to drop the superscript, l from Jj in (2.11).

– 5 –
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where λ
(a)
0 , µ = π

p+1 and λ
(a,b)
j are real. Here, M(1,1) = M(2,1) = N

2 − 1, and M(1,2) = p−1
2 ,

M(2,2) = p−3
2 . As before, µλ

(a,1)
j are the zeros of Qa(u) that form real sea (“sea” roots) and

µλ
(a,2)
k are real parts of the “extra” roots (also zeros of Qa(u)) which are not part of the

“seas”. For this state, we also have µλ
(a)
0 , the real parts of additional “extra” roots that

form a 2-string.

The counting functions for this state are given by

h
(1)(λ) =

1

2π

{

(2N + 1)q1(λ) − r1(λ) − q1+2a−
(λ) − q1−2a−

(λ) − q1+2a+(λ) − q1−2a+(λ)

−

N
2
−1
∑

k=1

[

q2

(

λ−λ
(2,1)
k

)

+q2

(

λ+λ
(2,1)
k

)]

−

(p−3)/2
∑

k=1

[

r2

(

λ−λ
(2,2)
k

)

+r2

(

λ+λ
(2,2)
k

)]

−q3

(

λ − λ
(2)
0

)

− q3

(

λ + λ
(2)
0

)

− q1

(

λ − λ
(2)
0

)

− q1

(

λ + λ
(2)
0

)

}

, (2.19)

and

h
(2)(λ) =

1

2π

{

(2N + 1)q1(λ) − r1(λ)

−

N
2
−1
∑

k=1

[

q2

(

λ−λ
(1,1)
k

)

+q2

(

λ+λ
(1,1)
k

)]

−

(p−1)/2
∑

k=1

[

r2

(

λ−λ
(1,2)
k

)

+r2

(

λ+λ
(1,2)
k

)]

−q3

(

λ − λ
(1)
0

)

− q3

(

λ + λ
(1)
0

)

− q1

(

λ − λ
(1)
0

)

− q1

(

λ + λ
(1)
0

)

}

. (2.20)

The Bethe ansatz equations for this state take the following form,

h
(l)(λ

(l,1)
j ) = Jj , l = 1 , 2 (2.21)

where {J1, J2, . . . , JN
2
−1} is a set of increasing positive integers that parametrize the state.

The hole for this state breaks the sequence, represented by a missing integer. As before,

the missing integer J̃ ,enables one to calculate the hole rapidity, λ̃ using

h
(1)(λ̃) = h

(2)(λ̃) = J̃ . (2.22)

If the hole appears to the right of the largest “sea” root

(

λ
(a,1)
N
2
−1

)

, then J̃ =
⌊

h
(l)(∞) − h

(l)

(

λ
(a,1)
N
2
−1

)⌋

. More on this state can be found in [25].

3. Boundary S matrix

In this section, we give the derivation for the boundary scattering amplitudes for one-hole

states reviewed in section 2.

– 6 –
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3.1 Eigenvalue for the one-hole state without 2-string

First, we consider the state reviewed in section 2.1. From (2.12), (2.13), (2.16) and (2.17),

one can solve for the sum of the two densities. We recall the results below [24],

ρtotal(λ) = ρ(1)(λ) + ρ(2)(λ)

= 4s(λ) +
1

N
R+(λ) (3.1)

where s(λ) = 1
2 cosh(πλ) and R+(λ) is the inverse Fourier transform of R̂+(ω)6 which is

given by

R̂+(ω)=
1

1+â2(ω)

[

2â1(ω)+2â2(ω)−2b̂1(ω)−â1+2a−
(ω)−â1−2a−

(ω)−â1+2a+(ω)−â1−2a+(ω)

−2b̂2(ω)





p−1
2
∑

k=1

cos(λ
(2,2)
k ω) +

p+1
2
∑

l=1

cos(λ
(1,2)
l ω)



+ 4â2(ω) cos(λ̃ω)

]

(3.2)

and

ân(ω) = sgn(n)
sinh ((ν − |n|)ω/2)

sinh (νω/2)
, 0 ≤ |n| < 2ν , (3.3)

b̂n(ω) = −
sinh (nω/2)

sinh (νω/2)
, 0 < ℜe n < ν . (3.4)

are the Fourier transforms of (2.17). The presence of “extra” roots, λ
(a,2)
k and the hole

rapidity, λ̃, are to be noted here.7 Henceforth, we shall denote λ
(a,2)
k simply as λ

(a)
k .

Morever, momentum of the excitation is given by

p(λ̃) = tan−1
(

sinh(πλ̃)
)

−
π

2
(3.5)

From (3.5), one gets s(λ) = 1
2π

dp(λ)
dλ . Consequently, using (2.16), one rewrites (3.1) as

1

N

dhtotal(λ)

dλ
=

2

π

dp(λ)

dλ
+

1

N
R+(λ) (3.6)

where htotal(λ) = h
(1)(λ) + h

(2)(λ) and 1
N

dhtotal(λ)
dλ = ρtotal(λ). After integrating (3.6) with

respect to λ, taking limits of integration from 0 to λ̃, one finds8

htotal(λ̃) = h
(1)(λ̃) + h

(2)(λ̃) =
2

π
Np(λ̃) +

∫ λ̃

0
dλR+(λ) (3.7)

6Our conventions are

f̂(ω) ≡

Z

∞

−∞

e
iωλ

f(λ) dλ , f(λ) =
1

2π

Z

∞

−∞

e
−iωλ

f̂(ω) dω .

7Energy carried by the hole is given by E(λ̃) = π sin µ

2µ
1

cosh(πλ̃)
. Such an expression for spinon was derived

in [8]
8Since we are only able to determine the scattering amplitudes up to a rapidity-independent factor, the

additive constant p(0) from the integration is ignored in (3.7).
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Since h
(1)(λ̃) = h

(2)(λ̃) ∈ positive integer and R+(λ) is an even function of λ, multiplying

the resulting expression by 2iπ and exponentiating gives

e2ip(λ̃)Ne
iπ
2

R λ̃

−λ̃
dλR+(λ) = 1 (3.8)

Next, let us compare equation (3.8) to the Yang’s quantization condition for a particle on

an interval of length N ,

e2ip(λ̃)NR(λ̃; a+)R(λ̃; a−) | λ̃, (±)〉 =| λ̃, (±)〉 (3.9)

where R(λ̃; a±) are the non-diagonal boundary S matrices and | λ̃, (±)〉 denote the two

possible one-hole states. Note that the ± in | λ̃, (±)〉 represents two posssible one-hole

states and not the right and left boundaries. The expression e
iπ
2

R λ̃

−λ̃
dλR+(λ) then, should

be equal to one of the two eigenvalues of the Yang matrix Y (λ̃) defined by

Y (λ̃) = R(λ̃; a+)R(λ̃; a−) (3.10)

Defining this eigenvalue as α(λ̃, a+)α(λ̃, a−), where + and − denote the right and left

boundaries respectively, (3.8) can be rephrased as

e2ip(λ̃)Nα(λ̃, a+)α(λ̃, a−) = 1 (3.11)

The problem thus reduces to evaluating the following

α(λ̃, a+)α(λ̃, a−) = e
iπ
2

R λ̃

−λ̃
dλR+(λ) (3.12)

After some manipulations, we have the following,

α(λ̃, a+)α(λ̃, a−)=exp

{

2

∫

∞

0

dω

ω
sinh(2iλ̃ω)

[

â2(ω)

1+â2(ω)
+

1

1+â2(2ω)

[

â2(2ω)+â1(2ω)−b̂1(2ω)

−
1

2
(â1+2a−

(2ω)+â1−2a−
(2ω)+â1+2a+(2ω)+â1−2a+(2ω))

−b̂2(2ω)

(

p−1
2
∑

k=1

cos(2λ
(2)
k ω) +

p+1
2
∑

l=1

cos(2λ
(1)
l ω)

)]]

}

(3.13)

Further, using (3.3) and (3.4), one gets

α(λ̃, a+)α(λ̃, a−) = exp

{

2

∫

∞

0

dω

ω
sinh(2iλ̃ω)

[

2 sinh(3ω/2) sinh((ν − 2)ω/2)

sinh(2ω) sinh((ν − 1)ω/2)
(3.14)

+
sinh(ω)

sinh((ν − 1)ω) cosh(ω)
+

sinh((−ν + 2a− − 1)ω)

2 sinh((ν − 1)ω) cosh(ω)

+
sinh((ν − 2a− − 1)ω)

2 sinh((ν − 1)ω) cosh(ω)
+ (a− → a+)

+
sinh(ω)

sinh((ν − 1)ω)

(

p−1
2
∑

k=1

cos(2λ
(2)
k ω) +

p+1
2
∑

l=1

cos(2λ
(1)
l ω)

)]

}
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where (a− → a+) is a shorthand for two additional terms which are the same as the third

and fourth terms in the integrand of (3.14), but with a− replaced by a+. The integrals

involving “extra” roots λ
(2)
k and λ

(1)
l yield

exp

{

2

∫

∞

0

dω

ω
sinh(2iλ̃ω)

sinh(ω)

sinh((ν − 1)ω)
(

p−1
2
∑

k=1

cos(2λ
(2)
k ω) +

p+1
2
∑

l=1

cos(2λ
(1)
l ω))

}

=

p−1
2
∏

k=1

p+1
2
∏

l=1

√

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

f

(

λ
(2)
k , λ

(1)
l , λ̃ +

iπ

µ′

)

(3.15)

where µ′ = π
ν−1 and

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

=
sinh (µ′

2 (λ̃ + λ
(2)
k + i

2 − iπ
2µ′ ))

sinh (µ′

2 (λ̃ + λ
(2)
k − i

2 + iπ
2µ′ ))

cosh (µ′

2 (λ̃ − λ
(2)
k + i

2 + iπ
2µ′ ))

cosh (µ′

2 (λ̃ − λ
(2)
k − i

2 − iπ
2µ′ ))

×
sinh (µ′

2 (λ̃ + λ
(1)
l + i

2 + iπ
2µ′ ))

sinh (µ′

2 (λ̃ + λ
(1)
l − i

2 − iπ
2µ′ ))

cosh (µ′

2 (λ̃ − λ
(1)
l + i

2 − iπ
2µ′ ))

cosh (µ′

2 (λ̃ − λ
(1)
l − i

2 + iπ
2µ′ ))

(3.16)

After evaluating the rest of the integrals, (3.14) becomes

α
(

λ̃, a+

)

α
(

λ̃, a−

)

=S0(λ̃)2S1(λ̃, a−)S1(λ̃, a+)

p−1
2
∏

k=1

p+1
2
∏

l=1

√

f(λ
(2)
k , λ

(1)
l , λ̃)f

(

λ
(2)
k , λ

(1)
l , λ̃+

iπ

µ′

)

(3.17)

where

S0(λ̃) =
1

π
cosh(µ′λ̃)

∞
∏

n=0

Γ
[

1
ν−1(4n + 1 − 2iλ̃)

]

Γ
[

1
ν−1(4n + 3 − 2iλ̃) + 1

]

Γ
[

1
ν−1(4n + 1 + 2iλ̃)

]

Γ
[

1
ν−1(4n + 3 + 2iλ̃) + 1

]

×
Γ
[

1
ν−1(4n + 4 + 2iλ̃)

]

Γ
[

1
ν−1(4n + 2iλ̃) + 1

]

Γ
[

1
ν−1(4n + 4 − 2iλ̃)

]

Γ
[

1
ν−1(4n − 2iλ̃) + 1

]

×
Γ2
[

1
ν−1(2n − iλ̃) + 1

2

]

Γ2
[

1
ν−1(2n + 1 + iλ̃) + 1

2

]

Γ2
[

1
ν−1(2n + 2 + iλ̃) + 1

2

]

Γ2
[

1
ν−1(2n + 1 − iλ̃) + 1

2

] (3.18)

S1(λ̃, a±) =
1

π

√

cosh(µ′(λ̃ +
i

2
(ν − 2a±))) cosh(µ′(λ̃ −

i

2
(ν − 2a±)))

×

∞
∏

n=0

Γ
[

1
ν−1(2n+1+iλ̃− 1

2(ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n+1+iλ̃+ 1

2(ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n+1−iλ̃− 1

2(ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n+1−iλ̃+ 1

2(ν−2a±))+ 1
2

]

×
Γ
[

1
ν−1(2n−iλ̃− 1

2 (ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n−iλ̃+ 1

2 (ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n+2+iλ̃− 1

2 (ν−2a±))+ 1
2

]

Γ
[

1
ν−1(2n+2+iλ̃+ 1

2(ν−2a±))+ 1
2

](3.19)
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The values of the “extra” roots are dependent on the hole rapidity, λ̃ and the boundary

parameters, a±. Hence, it is sensible to expect a relation between these “extra” roots,
{

λ
(2)
k , λ

(1)
l

}

, the boundary parameters, a± and the hole rapidity, λ̃. Consequently, one

needs to express the right hand side of (3.15) in terms of purely a± and λ̃ to complete the

derivation. To look for this additional relation, we begin with the information contained

in the difference of the two densities, ρ(1)(λ) − ρ(2)(λ). This leads to the following,

ρdiff(λ) = ρ(1)(λ) − ρ(2)(λ)

=
1

N
R−(λ) (3.20)

where R−(λ) has the following Fourier transform,

R̂−(ω) =
1

1 − â2(ω)

[

− â1+2a−
(ω) − â1−2a−

(ω) − â1+2a+(ω) − â1−2a+(ω)

−2b̂2(ω)

(

p−1
2
∑

k=1

cos
(

λ
(2)
k ω

)

−

p+1
2
∑

l=1

cos
(

λ
(1)
l ω

)

)

]

(3.21)

Analogous to (3.6)) one gets

1

N

dhdiff(λ)

dλ
=

1

N
R−(λ) (3.22)

where hdiff(λ) = h
(1)(λ)− h

(2)(λ) and 1
N

dhdiff (λ)
dλ = ρdiff(λ). Further, integrating (3.22) with

respect to λ, taking limits of integration from 0 to λ̃ as before, one finds

hdiff(λ̃) = h
(1)(λ̃) − h

(2)(λ̃) =

∫ λ̃

0
dλR−(λ) (3.23)

Since h
(1)(λ̃) = h

(2)(λ̃) ∈ positive integer, using the fact that R−(λ) is an even function of

λ and exponentiating (3.23) we get

e
R λ̃

−λ̃
dλR−(λ) = g(λ̃, a+)g(λ̃, a−)

p−1
2
∏

k=1

p+1
2
∏

l=1

√

√

√

√

√

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

f
(

λ
(2)
k , λ

(1)
l , λ̃ + iπ

µ′

) = 1 (3.24)

where g(λ̃, a±) ≡

√

cosh( iµ′

2
(ν−2a±))+i sinh(µ′λ̃)

cosh( iµ′

2
(ν−2a±))−i sinh(µ′λ̃)

. Next, an important observation is the fol-

lowing relation (as N → ∞),

p−1
2
∏

k=1

p+1
2
∏

l=1

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

= −1 (3.25)

for which we provide numerical support in table 1. Although the results shown in table 1

are computed for the case where the hole appears to the right of the largest “sea” root, we

find similar results for other hole locations. From (3.24) and (3.25), it also follows that

p−1
2
∏

k=1

p+1
2
∏

l=1

f

(

λ
(2)
k , λ

(1)
l , λ̃ +

iπ

µ′

)

= −

(

g(λ̃, a+)g(λ̃, a−)

)2

(3.26)
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N
∏

p−1
2

k=1

∏

p+1
2

l=1 f(λ
(2)
k , λ

(1)
l , λ̃), p = 3

∏

p−1
2

k=1

∏

p+1
2

l=1 f(λ
(2)
k , λ

(1)
l , λ̃), p = 5

24 -0.999364 + 0.0356655 i -0.999334 + 0.036496 i

32 -0.999421 + 0.0340133 i -0.999333 + 0.036522 i

40 -0.999466 + 0.0326686 i -0.999334 + 0.036486 i

48 -0.999502 + 0.0315413 i -0.999337 + 0.036419 i

56 -0.999532 + 0.0305749 i -0.999340 + 0.036336 i

64 -0.999558 + 0.0297318 i -0.999343 + 0.036243 i

Table 1:
∏

p−1

2

k=1

∏

p+1

2

l=1 f(λ
(2)
k

, λ
(1)
l

, λ̃) for p = 3 (a+ = 2.1, a
−

= 1.6) and p = 5 (a+ = 3.3, a
−

= 2.7),

from numerical solutions based on N = 24 ,32 ,. . . ,64.

We stress here that the values of λ
(2)
k and λ

(1)
l used in computations above strictly satisfy

the Bethe equations (2.3). Finally, we can rewrite (3.17) as

α(λ̃, a+)α(λ̃, a−) = S0(λ̃)2S1(λ̃, a−)S1(λ̃, a+)g(λ̃, a+)g(λ̃, a−) (3.27)

up to a rapidity-independent phase factor. Subsequently, the complete expression for each

boundary’s scattering amplitude is given by (up to a rapidity-independent phase factor)

α(λ̃, a±) = S0(λ̃)S1(λ̃, a±)g(λ̃, a±) (3.28)

where + and − again denotes right and left boundaries respectively.

3.2 Eigenvalue for the one-hole state with 2-string

We now consider the one-hole state with a 2-string, reviewed in section 2.2. The compu-

tation of the eigenvalue for this state is identical to the one given above. Hence, we skip

the details and present the result. Analogous to (3.14), we have

β(λ̃, a+)β(λ̃, a−) = exp

{

2

∫

∞

0

dω

ω
sinh(2iλ̃ω)

[

2 sinh(3ω/2) sinh((ν − 2)ω/2)

sinh(2ω) sinh((ν − 1)ω/2)

+
sinh(ω)

sinh((ν − 1)ω) cosh(ω)
+

sinh((−ν + 2a− − 1)ω)

2 sinh((ν − 1)ω) cosh(ω)

+
sinh((ν − 2a− − 1)ω)

2 sinh((ν − 1)ω) cosh(ω)
+ (a− → a+)

+
sinh(ω)

sinh((ν − 1)ω)





p−3
2
∑

k=1

cos
(

2λ
(2)
k ω

)

+

p−1
2
∑

l=1

cos
(

2λ
(1)
l ω

)





+
sinh(2ω)

sinh((ν − 1)ω)
(cosh(2iλ

(1)
0 ω) + cosh(2iλ

(2)
0 ω))

]

}

(3.29)

which after evaluating the integrals yields

β(λ̃, a+)β(λ̃, a−) = S0(λ̃)2S1(λ̃, a−)S1(λ̃, a+)w(λ
(1)
0 , λ̃)w(λ

(2)
0 , λ̃)

×

p−3
2
∏

k=1

p−1
2
∏

l=1

√

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

f

(

λ
(2)
k , λ

(1)
l , λ̃ +

iπ

µ′

)

(3.30)
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N φ, p = 3 φ, p = 5

24 0.967073 + 0.254500 i 0.990295 + 0.138982 i

32 0.981063 + 0.193688 i 0.994434 + 0.105361 i

40 0.987716 + 0.156259 i 0.996308 + 0.085849 i

48 0.991392 + 0.130928 i 0.997674 + 0.068166 i

56 0.993634 + 0.112654 i 0.998065 + 0.062174 i

64 0.995102 + 0.098852 i 0.998407 + 0.056428 i

Table 2: φ for p = 3 (a+ = 2.1, a
−

= 1.6) and p = 5 (a+ = 3.2, a
−

= 2.7), from numerical

solutions based on N = 24 ,32 ,. . . ,64.

where

w(λ
(a)
0 , λ̃) =

√

√

√

√

cosh(µ′(λ̃ + λ
(a)
0 + i))

cosh(µ′(λ̃ + λ
(a)
0 − i))

cosh(µ′(λ̃ − λ
(a)
0 + i))

cosh(µ′(λ̃ − λ
(a)
0 − i))

, a = 1 , 2 , (3.31)

As before, (a− → a+) represents two additional terms which are the same as the third and

fourth terms in the integrand of (3.29), but with a− replaced by a+. We proceed to make

the following conjecture (as N → ∞) to complete the derivation.

w
(

λ
(1)
0 , λ̃

)

w
(

λ
(2)
0 , λ̃

)

p−3
2
∏

k=1

p−1
2
∏

l=1

√

f
(

λ
(2)
k , λ

(1)
l , λ̃

)

f

(

λ
(2)
k , λ

(1)
l , λ̃ +

iπ

µ′

)

(3.32)

= g

(

λ̃ +
iπ

µ′
, a+

)

g

(

λ̃ +
iπ

µ′
, a−

)

Like (3.25), we provide numerical support for (3.32) in table 2 where we compute the ratio

φ ≡ d1
d2

, where d1 and d2 are the left hand side and the right hand side of (3.32) respectively,

for systems up to 64 sites. We believe this supports the validity of (3.32) at N → ∞. The

values of λ
(2)
k , λ

(1)
l , λ

(1)
0 and λ

(2)
0 used in computations are obtained by solving numerically

the Bethe equations (2.19) and (2.20) for the “sea” roots and (2.3) for the “extra” roots.

The correctness and validity of such numerical solutions are checked by comparing them

with the ones obtained from McCoy’s method for smaller number of sites, e.g., N = 2 , 4

and 6.9 We stress here that although the results obtained in table 2 are computed for

J̃ = 1, namely the case where the hole appears close to the origin, similar results are found

for other hole locations, e.g., J̃ = 2 , 3 , . . ..

Using (3.32), the other eigenvalue for the Yang matrix (3.10) becomes

β(λ̃, a+)β(λ̃, a−) = S0(λ̃)2S1(λ̃, a+)S1(λ̃, a−)g

(

λ̃ +
iπ

µ′
, a+

)

g

(

λ̃ +
iπ

µ′
, a−

)

(3.33)

hence giving the following for each boundary’s scattering amplitude (up to a rapidity-

independent phase factor),

β(λ̃, a±) = S0(λ̃)S1(λ̃, a±)g

(

λ̃ +
iπ

µ′
, a±

)

(3.34)

9We are only able to use McCoy’s method to exactly solve for the Bethe roots for systems up to only 6

sites due to computer limitations.
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3.3 Relation to boundary sine-Gordon model

Next, we briefly review Ghoshal-Zamolodchikov’s results for the one boundary sine-Gordon

theory [5]. We borrow conventions used in [15, 27]. Ghoshal-Zamolodchikov’s results imply

that the right and left boundary S matrices R(θ ; η±, ϑ±, γ±) are given by

R(θ ; η, ϑ, γ) = r0(θ) r1(θ ; η, ϑ) M(θ ; η, ϑ, γ) , (3.35)

where M has matrix elements

M(θ ; η, ϑ, γ) =

(

m11 m12

m21 m22

)

, (3.36)

where (η±, ϑ±, γ±) are the Ghoshal-Zamolodchikov’s IR parameters and θ is the

hole-rapidity. Further,

m11 = cos η cosh ϑ cosh(τθ) + i sin η sinhϑ sinh(τθ) ,

m22 = cos η cosh ϑ cosh(τθ) − i sin η sinhϑ sinh(τθ) ,

m12 = ieiγ sinh(τθ) cosh(τθ) ,

m21 = ie−iγ sinh(τθ) cosh(τθ) . (3.37)

where τ = 1
ν−1 is the bulk coupling constant. The scalar factors have the following integral

representations [15, 27]

r0(θ) = exp

{

2i

∫

∞

0

dω

ω
sin(2θω/π)

sinh((ν − 2)ω/2) sinh(3ω/2)

sinh((ν − 1)ω/2) sinh(2ω)

}

,

r1(θ ; η, ϑ) =
1

cos η cosh ϑ
σ(η, θ) σ(iϑ, θ) , (3.38)

where

σ(x, θ)=exp

{

2

∫

∞

0

dω

ω
sin((iπ−θ)ω/(2π)) sin(θω/(2π))

cosh((ν−1)ωx/π)

sinh((ν−1)ω/2) cosh(ω/2)

}

.(3.39)

Our result (3.27) and (3.33) agree with the eigenvalues of R(θ ; η+, ϑ+, γ+)R(θ ; η−, ϑ−, γ−),

provided we make the following identification,

η± =
µ′

2
(ν − 2a±)

θ = πλ̃ (3.40)

In addition to (3.40), one should also take ϑ± = γ± = 0, since they are related to the

lattice parameters that appear in the spin chain Hamiltonian, (2.1) which have been set

to zero. Refer to the discussion following (2.2). The same expression is given in [15] for

the corresponding open XXZ spin chain with nondiagonal boundary terms but with a

constraint among the boundary parameters, hence suggesting that (3.40) holds true in

general. As noted above, the eigenvalues, (3.28) and (3.34) agree with the sine-Gordon

boundary S matrix eigenvalues. Hence the two eigenvalues can be related as follows,

α(λ̃, a±)

β(λ̃, a±)
=

cosh( iµ′

2 (ν − 2a±)) + i sinh(µ′λ̃)

cosh( iµ′

2 (ν − 2a±)) − i sinh(µ′λ̃)
(3.41)
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4. Discussion

Based on a recently proposed Bethe ansatz solution for an open spin-1/2 XXZ spin chain

with nondiagonal boundary terms, we have derived the boundary scattering amplitude

(equation (3.28)) for a certain one-hole state. We used a conjectured relation between the

“extra” roots and the hole rapidity, namely (3.25), which we verified numerically. This

result agrees with the corresponding S matrix result for the one boundary sine-Gordon

model derived by Ghoshal and Zamolodchikov [5], provided the lattice and IR parameters

are related according to (3.40). We obtained the second eigenvalue (3.34) by considering

an independent one-hole state with a 2-string. This scattering amplitude, derived for

the one-hole state with 2-string also agrees with Ghoshal-Zamolodchikov’s result following

conjecture (3.32), which we verified numerically and identification (3.40). It would be

interesting to derive (3.25) and (3.32) analytically.

It will also be interesting to study the excitations for the more general case of the open

XXZ spin chain, namely with six arbitrary boundary parameters and arbitrary anisotropy

parameter, and derive its corresponding S matrix. Solutions (spectrums) have been pro-

posed for the general case, using the representation theory of q-Onsager algebra [28] and

the algebraic-functional method [29]. However, Bethe ansatz solution for this general case

has not been found so far although such a solution has been proposed lately for the XXZ

spin chain with six boundary parameters at roots of unity [30]. In addition to the bulk

excitations, one can equally well look at boundary excitations although this can be rather

challenging even for the simpler case of spin chains with diagonal boundary terms. It is

therefore our hope that some of these issues are addressed in future publications.

Acknowledgments

I would like to thank R.I. Nepomechie for his invaluable advice, suggestions and comments

during the course of completing this work. I also fully appreciate the financial support

received from the Department of Physics, University of Miami. I also thank the referee

for his/her helpful questions and suggestions that further helped to appropriately revise

the paper.

References

[1] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive

delta-function interaction, Phys. Rev. Lett. 19 (1967) 1312.

[2] A.B. Zamolochikov and A.B. Zamolodchikov, Factorized S-matrices in two dimensions as the

exact solutions of certain relativistic quantum field theory models, Ann. Phys. (NY) 120

(1979) 253.

[3] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. (NY) 70 (1972)

193 [Ann. Phys. (NY) 281 (2000) 187]; Asymptotically degenerate maximum eigenvalues of

the eight-vertex model transfer matrix and interfacial tension, J. Stat. Phys. 8 (1973) 25;

Exactly solved models in statistical mechanics, Academic Press (1982).

– 14 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C19%2C1312
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C120%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C120%2C253
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C70%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C70%2C193
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C281%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JSTPB%2C8%2C25


J
H
E
P
0
3
(
2
0
0
8
)
0
5
3

[4] I.V. Cherednik, Factorizing particles on a half-line and root systems, Theor. Math. Phys. 61

(1984) 977 [Teor. Mat. Fiz. 61 (1984) 35].

[5] S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in

two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841

[Erratum ibid. A 9 (1994) 4353] [hep-th/9306002].

[6] V.E. Korepin, Direct calculation of the S-matrix in the massive Thirring model, Theor. Math.

Phys. 41 (1979) 953 [Teor. Mat. Fiz. 41 (1979) 169].

[7] N. Andrei and C. Destri, Dynamical symmetry breaking and fractionization in a new

integrable model, Nucl. Phys. B 231 (1984) 445.

[8] L.D. Fadeev and L.A. Takhtajan, Spectrum and scattering of excitations in the

one-dimensional isotropic Heisenberg model, J. Sov. Math. 24 (1984) 241 [Zap. Nauchn.

Semin. 109 (1981) 134].

[9] P. Fendley and H. Saleur, Deriving boundary S matrices, Nucl. Phys. B 428 (1994) 681

[hep-th/9402045].

[10] M.T. Grisaru, L. Mezincescu and R.I. Nepomechie, Direct calculation of the boundary S

matrix for the open Heisenberg chain, J. Phys. A 28 (1995) 1027 [hep-th/9407089].

[11] A. Doikou and R.I. Nepomechie, Direct calculation of breather S matrices, J. Phys. A 32

(1999) 3663 [hep-th/9903066].

[12] A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in

integrable quantum field theories, Nucl. Phys. B 453 (1995) 581 [hep-th/9503227].

[13] C. Ahn and R.I. Nepomechie, Finite size effects in the XXZ and Sine-Gordon models with

two boundaries, Nucl. Phys. B 676 (2004) 637 [hep-th/0309261].

[14] C. Ahn, M. Bellacosa and F. Ravanini, Excited states NLIE for Sine-Gordon model in a strip

with Dirichlet boundary conditions, Phys. Lett. B 595 (2004) 537 [hep-th/0312176].

[15] C. Ahn, Z. Bajnok, R.I. Nepomechie, L. Palla and G. Tak’acs, NLIE for hole excited states in

the Sine-Gordon model with two boundaries, Nucl. Phys. B 714 (2005) 307

[hep-th/0501047].

[16] A. Doikou, Generic boundary scattering in the open XXZ chain, arXiv:0711.0716.

[17] A. Klumper and M.T. Batchelor, An analytic treatment of finite-size corrections in the spin-1

antiferromagnetic XXZ chain, J. Phys. A 23 (1990) L189;

A. Klumper, M.T. Batchelor and P.A. Pearce, Central charges of the 6- and 19-vertex models

with twisted boundary conditions, J. Phys. A 24 (1991) 3111.

[18] C. Destri and H.J. de Vega, New thermodynamic Bethe ansatz equations without strings,

Phys. Rev. Lett. 69 (1992) 2313; Unified approach to thermodynamic Bethe ansatz and finite

size corrections for lattice models and field theories, Nucl. Phys. B 438 (1995) 413

[hep-th/9407117].

[19] D. Fioravanti, A. Mariottini, E. Quattrini and F. Ravanini, Excited state Destri-De Vega

equation for Sine-Gordon and restricted Sine-Gordon models, Phys. Lett. B 390 (1997) 243

[hep-th/9608091].

[20] C. Destri and H.J. de Vega, Non-linear integral equation and excited-states scaling functions

in the Sine-Gordon model, Nucl. Phys. B 504 (1997) 621 [hep-th/9701107].

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C61%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C61%2C977
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C61%2C35
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA9%2C3841
http://arxiv.org/abs/hep-th/9306002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C41%2C953
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C41%2C953
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C41%2C169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB231%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JOSMA%2C24%2C241
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZNSLA%2C109%2C134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZNSLA%2C109%2C134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB428%2C681
http://arxiv.org/abs/hep-th/9402045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA28%2C1027
http://arxiv.org/abs/hep-th/9407089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA32%2C3663
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPAGB%2CA32%2C3663
http://arxiv.org/abs/hep-th/9903066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB453%2C581
http://arxiv.org/abs/hep-th/9503227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB676%2C637
http://arxiv.org/abs/hep-th/0309261
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB595%2C537
http://arxiv.org/abs/hep-th/0312176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB714%2C307
http://arxiv.org/abs/hep-th/0501047
http://arxiv.org/abs/0711.0716
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C69%2C2313
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB438%2C413
http://arxiv.org/abs/hep-th/9407117
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB390%2C243
http://arxiv.org/abs/hep-th/9608091
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB504%2C621
http://arxiv.org/abs/hep-th/9701107


J
H
E
P
0
3
(
2
0
0
8
)
0
5
3

[21] G. Feverati, F. Ravanini and G. Tak’acs, Nonlinear integral equation and finite volume

spectrum of Sine-Gordon theory, Nucl. Phys. B 540 (1999) 543 [hep-th/9805117]; Truncated

conformal space at c = 1, nonlinear integral equation and quantization rules for multi-soliton

states, Phys. Lett. B 430 (1998) 264 [hep-th/9803104].

[22] G. Feverati, Finite volume spectrum of Sine-Gordon model and its restrictions,

hep-th/0001172.

[23] R. Murgan and R.I. Nepomechie, Generalized T-Q relations and the open XXZ chain, J. Stat.

Mech. (2005) P08002 [hep-th/0507139].

[24] R. Murgan, R.I. Nepomechie and C. Shi, Boundary energy of the open XXZ chain from new

exact solutions, Annales Henri Poincaré 7 (2006) 1429 [hep-th/0512058].
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